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SUMMARY 
A stable fast marching scheme has been developed for the solution of coupled parabolic partial differential 
equations such as the Navier-Stokes equations. The scheme was developed with the aid of a stability 
analysis. The implementation of the method in standard alternating direction implicit algorithms is 
straightforward. The scheme was tested on the problem of natural convection in a square cavity. The 
number of iterations required for convergence was significantly reduced compared to conventional methods. 

1. INTRODUCTION 

Rapid development of digital computers and numerical methods in the last 20 years has made it 
possible to solve the Navier-Stokes equations for increasingly complicated situations. Today it is 
possible to obtain numerical solutions for a wide range of problems of engineering significance by 
numerical methods. However, the solution is often obtained at the cost of a large amount of 
computer time. 

A usual reason for the inefficiency of Navier-Stokes solvers is the lack of stability of the 
solution procedure, which limits the size of the time step (or the number of time steps required to 
reach a steady state). Rigorous stability analysis is not possible since convergence and stability 
cannot be proven for most of these more complicated non-linear coupled problems. In fact, one is 
often forced to study stability empirically, with the numerical methods playing the role of an 
experimental tool. 

When marching-in time or space-it is sometimes possible to use linear stability theory to 
predict the upper stability bound for the marching step size. However, in practice it is usually 
necessary to use a smaller step size than the one predicted by the analysis. Since it is often only the 
steady state (or fully developed) condition which is of interest in engineering problems, it is most 
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desirable, in a marching scheme, to save computer time by reaching such a condition in as few 
steps as possible by using as large a step size as possible. 

The work described herein was developed during a study of the buoyancy-driven motion of a 
viscous incompressible fluid in an enclosure. In this paper we propose to use a three-level 
marching scheme to improve the stability of parabolic solvers in general and Navier-Stokes 
solvers in particular. The improved stability permits the use of larger time steps, thus speeding up 
the convergence to a steady state. The application of the method to existing codes is easy and 
requires very few changes. The implementation of the scheme in an alternating direction implicit 
(ADI) method is discussed. The improvement in obtaining results to the problem of natural 
convection in a square cavity is shown. 

2. MATHEMATICAL FORMULATION 

Consider a partial differential equation of the form 

where t is the time or a spatial marching direction, L is a linear elliptic differential operator and S 
is the source term. The usual finite difference substitution for. (1) without a source is a two-point 
formula based on upstream and downstream values of the form 

~14" '~  +fi@"'At(SL&''' +EL$"), (2) 
where At is the time step size and n represents the time ( t  = nAt). In two-point schemes we usually 
use CI = - f i  = 1. When 6 = E =j we get the second-order Crank.-Nicolson scheme;' when 6 = 1 and 
E=O the first-order implicit scheme is obtained; and S=O and E = 1 leads to the first-order explicit 
scheme. 

It is easy to show that the Crank-Nicolson scheme is the only two-point second-order scheme 
and therefore it is impossible to devise a second-order scheme which is more stable than the 
Crank-Nicolson scheme. Enhancement of stability is possible only if additional levels are used. 
The simplest possibility is the addition of a third level by adding @"" and L@-' to the left and 
right sides of (2) respectively. In this work we chose not to use L@- because it would increase 
the computational load and because the enhancement of stability is easily obtained even when 
this term is not used. Therefore (2) is replaced by 

cc&''1+B4"+y4"-1=AtsL4n+1 +AtEL4". (3) 
To examine the consistency of (3) we substitute a Taylor series expansion of each term around 

the nth step, giving the following equation (for convenience the superscript n is dropped from q5" 
and its derivatives): 

At2 
2 

( b + A t @ +  -@+ . . (4) 

where a prime denotes partial differentiation with respect to time. Collection of the terms into 
equal orders of At shows that 

CI+ f l+  y =O. (5)  
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If 
a- y = 6 + E, 

then the truncation error (first neglected term) will be of order At. By requiring further that 

a+ y = 26, (7) 
the truncation error becomes O(At2). 

be solved for B, E and 6 in terms of y:  
For convenience and without loss of generality we may choose a= 1. It follows that (5)-(7) can 

p= - 1 - y, E=(l-3y)/2, 6 = (1 + y)/2. (8) 
Substitution of (8) into (3), with the definition 

l/(l-y)=w, (9) 
yields 

(10) 

where w is a free parameter which may be so chosen as to enhance stability. 
It may be noted that the special case of w =  1 corresponds to the familiar Crank-Nicolson 

discretization. For w =* the scheme reduces to the unstable Richardson scheme. For w =$ the 
scheme becomes a variant of the leap-frog methods. 

The stability of (10) may be investigated using the family of solutions of the form 4=r"q50, 
where r, the amplification factor, is a constant and q50 is a spatial function. By substitution we get 

w (4" + - $") + ( 1 - W) ( $" - $" - I )  = At (W - $) Ldn + + At ($ - W) L#', 

[w -(w - +)Atp]r2 + [ - 2w + 1 - ($ - w) Atplr -(1- w)=O, (1 1) 
where 

P=LOo/O,. 
For a parabolic equation it can be shown that the real part of p is negative, say p = - k2, where k 
may be regarded as a wave number. The imaginary part is non-zero only when the operator L 
contains first derivatives. 

We want the amplification factor r to be as small as possible and the problem reduces to one of 
choosing the value of w to achieve this. Differentiation of (1 1) with respect to w yields 

dr dr 
dw dw 

214 - [w + (w - +) k2At] + r2(1 + k2At) + - [(l - 2w) + (; - w)k2At] - r(2 + k2At) + 1 = 0. (1 3) 

Equation (13) cannot be used to find the value of w which gives a minimum value of r. Therefore 
we return to (I 1) and examine the two limiting cases of very small and very large time steps, i.e. 
At-rO and At+co. When At+O we get 

r2w + r(1- 2w) + w- 1 =0, 
with the roots 

When At-, 00 we get 

with the roots 

r =  (1, (w- l) /w}.  

r2 (w - +) + r($ - w) = 0, 

14=(0, ( 2 ~ - 3 ) / ( 2 ~ -  l)}. 

The roots of these two limiting cases are plotted in Figure 1. It is evident that the magnitude of the 
amplification factor r for the two limiting solutions is the same when 

1 ( 2 ~ - 3 ) / ( 2 ~ -  1)1=\I(w- l) /Wl.  (18) 
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Figure 1 .  Distribution of the amplification factor r with 11: 

Equation (18) can be solved to  yield a compromise value of w for small and large At. The equation 
then reduces to 

of which the roots are w =(3 +J5)/4 or w1 = 1.309 and w 2  =0*191. It is obvious that the second 
root is not appropriate (see Figure 1) since it yields an amplification factor of about 4.2. The value 
of 1.309 for w is therefore chosen. With this value (10) becomes 

(20) 

w' - + w + 4 = 0, (19) 

I . 3 0 9 p '  - 1.618@'+ 0.3094"- = 0.809kLgi"' + 0191 kLP.  

3. AD1 IMPLEMENTATION 

A widely accepted method of solving parabolic and elliptic partial differential equations in both 
two and three dimensions is by alternating direction implicit (ADI) methods (see e.g. Isenberg and 
de Vahl Davis'). The partial differential equations are approximated by finite differences. With a 
compromise between accuracy and ease of programming in mind, the finite difference approxima- 
tions (FDAs) usually utilize first-order forward differences in the marching direction (time) and 
second-order central differences in space. AD1 methods keep the FDAs tridiagonal and hence 
permit the use of the efficient Thomas a lg~r i thm.~  The first AD1 method was introduced by 
Peaceman and Rachford4 and for the two-dimensional form of (1) the application of this AD1 
scheme is as follows: 
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where I denotes the unit matrix and A, and A, are one-dimensional matrix operators with 
L= [A,+ A, 1. The symbols 4* and @+I denote intermediate and updated values of 4 respect- 
ively. Note that the coefficient of A, and A, (i.e. At/2) results from the Crank-Nicolson scheme. 

Another AD1 scheme due to Douglas' (sometimes the method is attributed to Samarskii and 
Andreyev6), which was presented independently of the Peaceman-Rachford scheme, can in fact 
be derived from (21) and (22). 

Let 

f n+l =(&'+I -@)/At, (23) 
so that 4*, which is, in a sense, @+1/2, can be evaluated as 

(24) 
At 

( j * = ( j n +  5 f * 

and 

@ + = #' + &f"' (25) 
Substitution of (24) and (25) into (21) and (22), simplification and inclusion of the source term 
yields 

(I- ~ A , ) f * = ( A , + A , ) @ + S . ,  

(I- $4,) f n + l = f * .  

The Douglas scheme (equations (26) and (27) along with (25)) requires the advancement of the 
solution over the time step At through the use of two intermediate field evaluations (compared 
with one for Peaceman-Rachford ADI). Yet it is in fact more efficient and requires one less 
auxiliary array in programming. Furthermore, the Douglas scheme can be extended to three 
dimensions, whereas the Peaceman-Rachford scheme then becomes unstable. It should be noted 
that both AD1 schemes presented here are based on the Crank-Nicolson scheme (w = 1). They can 
be easily modified to accommodate any value of w and in particular the 'optimum' value which 
leads to (20). For the solution of this equation the Douglas (or Samarskii-Andreyev) AD1 scheme 
corresponds to the following steps. First (20) is further simplified by substitution for @ + I  

from (25) to give 

f n+ = 0-618AtLf n +  + 0.764AtL@+ 0.236f '. (28) 
The AD1 steps are 

#'-@-I 

(29) 

(30) 

@+l=#'+Atj-**. (31) 

At ' ( I  -0*618AtA,) f * =0764(A, + A,)#' +0*236 

(Z-0*618AtAY) f **= f *, 

For implementation, let us suppose that the source term S on the right-hand side of (1) is retained 
(e.g. the vorticity transport equation in a natural convection problem). Using a similar formula- 
tion to (3) but with the source term in the form 

At(ASn+'+BS"+CS"-'), 
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and expanding this equation in a way similar to (4), we find that conditions (5)-(7) for second- 
order accuracy in time still apply, but now some additional conditions are required. For first- 
order accuracy 

(32) A + B + C = 6 + E = l/w. 

An additional condition for second-order accuracy is 

A-C=(1+y)/2=1 -1/2w. (33) 
Letting A=O in order to eliminate the S"" term yields, for first-order accuracy, 

B + C =  l/w, (34) 
and the additional condition for second-order accuracy is 

c=-1+1/2w. (35) 
For simplicity and to save on computer memory requirements, it is desirable to retain the source 
term at only one level (e.g. S") .  Hence we choose A = C = 0, thus reducing the accuracy in time to 
first order. In this case (34) becomes 

B =  l /w. (36) 

(37) 

For w = 1.309 the coefficient of the source term S" is 0.764 and (28) becomes 

f "+' =0.618AtL f "+' + 0.764L+"+0.236f +0764AtS". 

The new algorithm can be easily implemented in an existing computer program based on the 
Douglas AD1 method. For the first time step (n= 1)  Crank-Nicolson must be used since 
in (29) is undefined. After the first step the new scheme can be used; @-' is an extra array to be 
saved. 

The ease of implementation can be appreciated by noting that (37) is a difference approxima- 
tion of the differential equation 

where M =  1.2361: and R= -0.472L@+0236fn+0.764AtS". 
Suppose an existing computer program has been written for the Crank-Nicolson-type 

Samarskii-Andreyev ADI. There are three simple changes to be made to convert the program to 
the proposed scheme. 

1. On the left-hand sides of the first- and second-level AD1 equations (26) and (27) multiply the 

2. On the right-hand side of the first-level equation (26) multiply the coefficient of A,+ A,  by 

3. On the right-hand side of the first-level equation add the term 0.236 (@-+"-')/At. 

+*= M +  +R, (38) 

coefficients of A ,  and A,  by 1.236. 

0.764. 

Further, if there is a source term in the equation, the term 0.764AtS" must replace AtS" on the 
right-hand side of the first level of ADI. 

Other AD1 methods in both two and three dimensions can be similarly modified to take 
advantage of the stability of the proposed scheme. 

4. TEST PROBLEM 

As described in the Section 1, the new stable fast marching scheme (SFMS) was developed during 
the study of buoyancy-driven natural convection in a rectangular cavity with different temper- 
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atures on the vertical sides. Therefore this problem was used as the test vehicle for the 
implementation of SFMS and for tests of its efficiency. 

The problem specifically considered here is that of the two-dimensional flow of a Boussinesq 
fluid of Prandtl number 0.71 (i.e. air) in an upright square cavity of side D. The walls are non-slip 
and impermeable. The horizontal walls are adiabatic and the vertical sides are at temperatures Th 
and T,. 

The streamfunction-vorticity ($ - 4) formulation of the Navier-Stokes equations was used. 
The quantities D, K (the thermal diffusivity) and D 2 / ~  were used as the non-dimensionalization 
scale factors for length, streamfunction and time respectively. The dimensionless temperature was 
defined as T=(  T ’- q)/( Th- K ) ,  where T’ is the local dimensional temperature. The horizontal 
axis is x and the vertical axis is y. The dimensionless governing equations are7 

a a a T  
- (ui)  + - (Ill) = Pr V2i + RaPr - , ax aY ax (39) 

a a 
- (uT)+ - (uT)=VZT. ax a Y  

These equations were modified to allow the use of the method of false transient’ by the inclusion, 
on the left-hand side of each, of the time derivative terms 

respectively. The addition of these false time derivatives to the system of coupled non-linear 
elliptic partial differential equations (39)-(41) converts the system to a parabolic form, thus 
enabling the utilization of a marching solution, equivalent to an iterative procedure. The transient 
solution is incorrect but, as t -+ co and the steady state is approached, the equations revert to their 
correct forms and the true steady solution is achieved. The coefficients a[, u$, and aT modify the 
transient terms and provide extra degrees of freedom to control stability and the rate of approach 
to the steady state. A stability ratio was defined as s = At/min(Ax2, Ayz) to determine the time 
step. 

The modified equations were solved on a square mesh by a finite difference method; forward 
differences were used for the time derivatives and second-order central differences for all space 
derivatives. The resulting finite difference approximations were solved by a Crank-Nicolson-type 
Samarskii-Andreyev AD1 algorithm. The program used (FRECON) was developed by de Vahl 
Davis9 and the method of the false transient has proved to be extremely fast and efficient in 
comparison to other methods.’ The method is second-order accurate but, with the help of 
Richardson’s extrapolation, solutions with very high accuracy can be obtained.’ 

For comparison purposes the SFMS was implemented in the program FRECON, as an option, 
in such a fashion that either the Crank-Nicolson or the new marching scheme could be specified. 
The vorticity transport equation (39) is the least stable of the system (39)-(41). Introduction of 
SFMS to the streamfunction and energy equations did not improve the speed of convergence 
significantly; therefore the standard scheme was retained for these two equations to save on 
computer memory requirements. Further, as mentioned earlier, the false transient coefficients 
provide extra degrees of freedom to control stability and the rate of approach to the steady state. 
In order to remove any influence of these factors on the speed of convergence, the as were set to 
unity, although this slows the false transient method considerably. 
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We assumed that the steady state had been reached when f** (the time rate of change of 
vorticity, streamfunction or temperature) at each mesh point had reached a small prescribed 
value; the marching process was then terminated. 

5. RESULTS 

For a Rayleigh number range of 104-106, solutions were found using uniform meshes of 21 x 21 
and 41 x 41. The finer mesh was used at the higher values of Ra. The results of the 
Crank-Nicolson-type marching algorithm (referred to as the ‘standard’ scheme and designated 
SS) are compared with the results of the stable fast marching scheme (SFMS). According to the 
analysis presented here, larger marching steps can be taken with SFMS and a steady state should 
be reached in fewer steps. The purpose of this comparison exercise was to verify this claim. 

Comparisons of the values of vorticity at the mid-point of the hot wall at different times for 
Ra = lo4 are shown in Figures 2-5. The extrapolated zero-time-step values for both methods at 
each time differ by less than 0.04%. This indicates, as expected., that for extremely small time steps 
the schemes yield identical values at all times. Further, it can be seen that SFMS and SS are first- 
order accurate in time. 

The Crank-Nicolson-type Samarskii-Andreyev AD1 method can be shown to be uncondition- 
ally stable for a single linear equation. Unfortunately, it is not possible to prove (or disprove) the 
stability of the scheme when applied to coupled non-linear equations. Mallinson and de Vahl 
Davis’ in a test calculation on a linear diffusion equation obtained solutions using time steps as 
large as 160Ax2. However, they observed that for the non-linear coupled differential equations of 
natural convection in two or three dimensions there is a much smaller upper limit on the usable 
time step. They found this limit to be about 0-8Ax2 for false transient coefficients of unity. 

In order to determine the optimum value of time step for fastest convergence, a 
series of numerical experiments for Rayleigh numbers of lo4, 2 x lo4, 3 x lo4 and 4 x lo4 with 
q=aS =aT= 1 for different values of stability ratio s were performed. In these experiments a 

F b  =10,000, t=o.o18 

x SFMS 

? ]  g - 200 

LII 

X 

--0 0.4 0.8 1.2 1.6 2 
~tAtLf/b~* 

Figure 2. Vorticity at the mid-point of the hot wall at t=0.018 as a function of stability ratio 
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Figure 4. Vorticity at the mid-point of the hot wall at t=0.225 as a function of stability ratio 

convergence criterion of was used to determine the steady state condition. A summary of 
the results is presented in Table 1. 

For a Rayleigh number of lo4 a stability ratio of 0.2 for the standard scheme requires 2084 
iterations to reach steady state. Increasing the time step reduces the number of iterations to a 
minimum of 427 at an optimum stability ratio of 092. Further increase of the stability ratio to 
0.94 causes a dramatic rise in the number of time steps to convergence, but the correct steady 
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s = A t  /AX2 

390 

Figure 5. Vorticity at the mid-point of the hot wall at t=0.45 as a function of stability ratio 

Table I. Number 6f iterations for convergence to 0 and D denote oscillations and divergence respectively 

Ra= 10000 Ra=20000 Ra=30000 Ra=40000 
s= ____________ 
AtlAx' ss SFMS ss SFMS ss SFMS ss SFMS 

0 2  
0 4  
0.6 
0 8  
0.9 
0.92 
094 
095 
1 .o 
1.2 
1.4 
1.6 
1.7 
1.8 
2.0 

~~~ 

2084 
991 
662 
492 
431 
427 

1269 

(Djl l5  
(0) 2000 

2090 

698 

441 

- 

- 

- 
933 

675 
585 

- 

- 

- 

980 

654 
- 

- 
1402 

lo00 
848 

- 

- 

- 

1586 

1039 
- 

- 

- 

3069 
- 

- 
402 
335 
286 
250 
231 

(0) 2OOo 
(D) 36 

solution is eventually reached after 1269 iterations. A time step corresponding to a stability ratio 
of 0-95 results in a low-amplitude oscillation which persisted even after 2000 iterations, at which 
stage the marching was terminated. A stability ratio of 1-0 causes divergence after 115 iterations. 

Up to the optimum stability ratio of 0.92 both SS and SFMS require nearly the same number of 
iterations for convergence. This optimum time step (or stability ratio) for S S  compares favourably 
with the value of 0.8Ax2 proposed by Mallinson and de Vahl Davis. As expected, the SFMS 
results for Ra= lo4 indicate that the stability ratio can be increased far beyond the maximum for 
SS and hence fewer iterations are required for convergence. In this case the optimum value of s is 
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1.7 corresponding to 237 iterations, compared to 0.92 and 427 iterations. At this Rayleigh number 
SFMS diverges for a stability ratio of 2 after 36 iterations. 

Results presented in Table I indicate that the optimum values of the time step for both S S  and 
SFMS are almost independent of the Rayleigh number. It should be pointed out that these 
optimum values are for the case when all the false transient factors are equal to unity. If we define 
the percentage increase in the required number of iterations (PI) at the optimal stability ratio by 
using SS instead of SFMS as follows, 

x 100, (43) Nss - NSFMS PI= 
NSFMS 

then the results of Table I yield PI values of 80%, 74%, 63%, and 55% for Rayleigh numbers of 
lo4, 2 x lo4, 3 x lo4 and 4 x lo4 respectively. 

The number of iterations to convergence as a function of the stability ratio for Ra= lo4 is 
plotted in Figure 6. All the points fall on a straight line with a slope of - 1 (on a log-log scale), 
indicating that both methods are first-order accurate in time. In this figure the results for a 
convergence criterion of are also shown. They also fall on a straight line with a slope of - 1 
but, as expected, lie somewhat below the results for the tighter convergence criterion. 

In the method of false transient a properly chosen set of false transient factors reduces the 
required number of iterations considerably. It has been shown that for the natural convection 
problem the method is at least one order of magnitude faster than a conventional double-iterative 
procedure.8 Therefore we tested the method also for an optimal choice of false transient factors. 

I I I I I 1 1 1 1  I 
1 2 

s= At /Ax* 

Figure 6. Number of iterations required for convergence as a function of stability ratio; Ra= loo00 
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Initially a number of tests were performed and the method was tuned by adjusting the false 
transient factors a$, ctT and ac. Further numerical experiments were then carried out for different 
stability ratios (i.e. time steps) to determine the optimum step size (in the computer program the 
input parameter is s and the time step is internally calculated from At=sAx2) .  These optimal 
values were used then in both SS and SFMS schemes. The optimum stability ratios, giving the 
fastest possible convergence, for both SS and SFMS runs for Rayleigh numbers in the range 
104-106 are summarized in Table 11. The results indicate once again that compared to SS larger 
step sizes can be used in SFMS and as a result the steady state is reached in fewer steps. It should 
be pointed out that the starting condition for both schemes was the same (i.e. a linear temperature 
profile with all the other field variables set to zero). If one were not to use SFMS and instead chose 
SS, the increase in the number of iterations (PI) would be as shown in Table 111. 

In other words, the use of the conventional scheme rather than the proposed marching scheme 
can cost about 50% more computer time for this particular problem. 

As mentioned earlier, the value of w = 1.309 is a good value to be used in the five-term 
expansion (Crank-Nicolson-type schemes correspond to w = 1). The four-term expansion corres- 
ponding to w = $ ,  which was proposed and used by Berger et d." in a boundary-layer-type 
problem, was also implemented and tested. Although the results were somewhat better than the 
Crank-Nicolson scheme, SFMS proved to be faster. 

Table 11. Comparison of performance of SS and SFMS 

Optimum Optimum Number of Marching 
Ra Mesh S '!b. T.C iterations scheme 

104 
104 
5 104 
5 104 
105 
105 
105 
105 
s X  105 
5 x 105 
106 
106 

21 x 21 
21 x 21 
21 x 21 
21 x 21 
21 x21 
21 x21 
41 x41 
41 x41 
41 x 41 
41 x41 
41 x41 
41 x41 

3 
5 
3 
5 
3 
5.2 

12 
20 
12 
20 
12 
20 

1, 1, 0.1 
1, 1, 0 1  
1, 1, 0.1 
1, 1, 0.1 
1, 1, 0.1 
1, 1, 0.1 
1, 0.25, 0.01 
1, 0.25, 0.01 
1, 0.25, 0.01 
1, 0.25, 0.01 
1, 0.25, 0.01 
1, 0.25, 0.01 

104 
68 

123 
83 

151 
113 
3 14 
192 
253 
156 
287 
186 

ss 
SFMS 
ss 
SFMS 
ss 
SFMS 
ss 
SFMS 
ss 
SFMS 
ss 
SFMS 

Table 111. Percentage increase in the 
number of iterations between SSI and 

SFMS - 
Ra Mesh PI (96) 

104 21 x 21 53 
5 x  104 21 x21 48 
105 21 x 21 34 
105 41 x41 64 
5 x 105 41 x41 62 
10" 41 x41 54 - 
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As a final check on the accuracy of the solutions obtained, the SFMS results were compared 
with a very accurate 'benchmark solution'.' Agreement was excellent. Further, a Richardson 
extrapolation scheme" was adopted to determine the truncation convergence of SFMS. Sample 
results of the extrapolation for Ra= lo4 are presented here. Solutions were obtained for 21 x 21, 
41 x 41 and 81 x 81 meshes, 

Let 2, be the true value at a mesh point of a quantity whose computed value using a mesh size 
hi is Zi; then 

z,= &+ Ch;+ o(h;+ I ) ,  

where n is the order of the truncation error and C is taken to be independent of h. Now, if the 
solution Zi were known for three different meshes, then the values of Z,,  C and n could be 

Table IV. Effect of mesh size on some 
characteristic values of vorticity 

21 x 21 3958 431.3 -1235 
41 x 41 393.3 428.3 -124.7 
81 x 81 392'7 427.6 -125.0 

t 

0.01 u 
0.01 0.05 0.1 

MESH SIZE 

Figure 7. Error in vorticity at the mid-point of the hot wall and at the vorticity minimum as a function of mesh 



620 M. BEHNIA, M. WULFSHTEIN AND G. DE VAHL DAVIS 

calculated from the system of three equations with the three unknowns. Alternatively, the three 
equations can be reduced to one by eliminating 2, and C. It follows that the order of the 
truncation error, n, is given by the solution of 

Z I - Z ,  - h",h; 
Z ,  - Z 3  h; - h; 

at each mesh point. If h , / h , = h , / h , = R ,  say, this expression can be further simplified to give 

The 'constant' C can then be found at each mesh point and hence the 'true' value 2, can be 
obtained. Since the finite difference appoximations used were second order (in space), the 
expected value of n was 2. 

The values of vorticity are usually very sensitive to the accuracy of convergence. As mentioned, 
for a Rayleigh number of lo4 solutions were obtained using three mesh sizes ( h ,  =0.05, h, =0.025 
and h,=00125). The vorticity values at the mid-point of the hot wall, ((0, 0.5), as well as the 
maximum and minimum vorticities are given in Table IV. 

The value of n calculated from each set of quantities given above is very close to 2 (in fact 2-06, 
2.09 and 2.00 respectively). Considering the number of significant figures that were used to print 

0.01 
0.01 0.05 0.1 

MESH SIZE 

Figure 8. Error in vorticity at the vorticity minimum as a function of mesh 
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these quantities, the obtained values of n are very good. Similar calculations were performed for 
other quantities and n was determined to be quite close to the expected value of 2. 

The extrapolated zero-mesh ('true' value 2,) vorticities are 

((0, 0.5) = 392.5, (,,, =4274, cmin = - 125.1. 

The errors for different mesh sizes are plotted in Figures 7 and 8. The error percentages of each 
quantity for different mesh sizes fall on a straight line (on a log-log scale) with the slope of each 
line being very close to 2. Therefore it can be concluded that the method is indeed second-order 
accurate in space, i.e. that it possesses a rate of convergence of 2 in accordance with the theoretical 
asymptotic error estimate. 

6. CONCLUSIONS 

The stable fast marching scheme has been tested and found to converge faster than the 
conventional Crank-Nicolson method. The number of iterations required for convergence is 
about two-thirds that of the conventional scheme. Its application to existing codes is easy and 
involves only a few minor changes. The application of the scheme does not increase the computer 
time required per iteration, and only one more array of the size of the main variables is required 
because it was found to be sufficient to apply the method only to the least stable equation (i.e. 
vorticity). 

We have illustrated the use of the method in a natural convection problem. In forced 
convection it may prove advantageous to apply SFMS to the energy equation as well as the 
vorticity equation. 

ACKNOWLEDGEMENT 

This work has been performed with the partial support of the Australian Research Grants 
Scheme, for which the authors are grateful. 

REFERENCES 

1. J. Crank and P. Nicolson, Proc. Camb. Phil. Soc., 43, 50-67 (1947). 
2. J. Isenberg and G.  de Vahl Davis, in C. Gutfinger (ed.), Topics in Transport Phenomena: Bioprocesses, Mathematical 

3. L. H. Thomas, Elliptic Problems in Linear Diference Equations over a Network, Watson Scientific Computing 

4. D. W. Peaceman and H. H. Rachford, J. SIAM, 3,28 (1955). 
5. J. Douglas, Jr., Numer. Math., 4, 41 (1961). 
6. A. A. Samarskii and V. B. Andreyev, USSR Comput. Math. Math. Phys., 3, 1373 (1963). 
7. G. de Vahl Davis, Int. j .  numer. methodsjluids, 3, 249-264 (1983). 
8. G. D. Mallinson and G. de Vahl Davis, J. Comput. Phys., 12, 435-461 (1973). 
9. G. de Vahl Davis, Report 1976/FMT/l, School of Mechanical and Industrial Engineering, University of New South 

10. M. Berger, M. Israeli and M. Wolfshtein, in L. Dekker, G. Savastano and G. C. Vansteenkiste (eds), Simulation of 

1 1 .  L. F. Richardson, Trans. R. SOC. Lond. Ser. A ,  210, 307-357 (1910). 

Treatment, and Mechanism, Hemisphere, Washington DC, 1975, Chap. 5, pp. 457-553. 

Laboratory, Columbia University, New York, 1949. 

Wales, 1976. 

Systems '79, North-Holland, New York, 1979, pp. 437-445. 


